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[3], [4]). In standard Kalman filter, the covariance matk of the
estimation errok; — %y, is recursively computed. The algorithm pre-
sented in [1] performs recursion of the estimation error information
On Kalman Filter Solution of Space—Time Interpolation ~ matrix L, = P! instead, as the inherent sparseness in the formula-
tion is more apparent in the structure of the information matrix (e.g.,
Toshio M. Chin M andN themselves are the information matrices for and vy,
respectively). By limiting the matrix bandwidth appropriately, the in-
formation matrixL; can approximate the error covariances compactly
Abstract—The approximate Kalman filtering algorithm presented in [1]  ysing onlyO (') nonzero elements. In fact, the elements of the infor-

for image sequence processing can introduce unacceptable negative €igent avian matrix can be identified as the parameters of a Markov random
values in the information matrix and can have degraded performance in

some applications. The improved algorithm presented in this note guar- field (or regression in space) [1]. _ _
antees a positive definite information matrix, leading to more stable filter The algorithm presented in [1] for recursion of a sparsely approxi-

performance. matedL,, however, does not guarantee positive definiteness. Negative
Index Terms—Data assimilation, Kalman filter, Markov random field, ~ €igenvalues are not only infeasible in an information matrix but also
recursive least-squares, satellite imaging. causes of numerical inaccuracy and inefficiency (e.g., during iterative

inversion ofL,). This note presents an alternative recursion scheme
that preserves positive definiteness in the approximhtedalso, the
new scheme provides a measure of accuracy of approximation.

In [1], an approximate Kalman filtering method has been introduced
for time-recursive solution of an image sequence reconstruc- Il. RECURSION OFINFORMATION MATRIX
tion/restoration problem. Let the vectar. be the collection of the
unknowns over an image grid with' pixels at a time-index, and
v« be the under-constraining (e.g., sparse) observations, ofThe
solution is then sought for the time-varying, space-time optimization
(recursive least-squares [2]) problem

|. INTRODUCTION

The Kalman filter equations for recursion of the optimal estinkate
based on the dynamic system (2)—(3) can be written as

X =Fxi_ (4)
Li (% — %) = H ' N(y, — HX}) (5)

k
_ nin Z {Ixi — Fixi—1llar, + ly: — Hixi|l%,} (1) whereL; is the information matrix associated with the estimation error
PR s X — Xi. We also denote d;. the information matrix corresponding

5 7 . to the prediction errok, — Xi. The sequencfa,C associated with the
for M; = 0, where]| 4|z = A" BA denotes the quadratic normaf  ohimal estimates can be obtained by minimizing the “information” in
with a positive definite weight matri¥. The minimizing solutiont;. 5 manner consistent with the maximum entropy principle [5]. One way
for (1_) can be computec_i time-recursively by applying a Kalman filtgf) ro5jize this is through the following recursion.

algorithm to the dynamic system Theorem (Recursion of information matrixpssume that the ma-
trix L,_, + F/ MF is symmetric and strictly positive definite. The
estimation error information matrik;. in (5) can then be obtained by
v =Hxp 4+ vy (3) the recursion

xr =Fxp 1+ wy
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FTMF is positive definite; hence sols,_, + FT MF. Positive def- whereP;; denote theV x N marginal error covariance matrices. The
initeness and symmetry &f, can be easily verified (and imposed nu-one-step ahead predicticfi, and its error covariance are given by
merically) from (6) and (7), even for an arbitra®.. A systematic ap- x;M“ andP .., respectively. The desired expressions can then be ob-
proximation ofL, canbe performed by constraining the free paramettined by applying the matrix inversion lemma [5] as follows:
©;, so thatL (©;,) would have a desired sparse structure. Such an ap-
proach is explored in Section IV.

To prove the theorem the optimal expressionsderandL,, are de-
rived first. Minimization of the trace dL; () is equivalent to mini-

X =PoiLyp 1Xe

=M 'MFP, L, %X

mizing each of the (positive real) diagonal element =F(Li—1 + F'MF - F' MM 'MF) 'Lj_1%—1
=Fx;— (15)
Gi = 10,113, + v, — Fé;lk 8
which is (4) and
j=12,---,N,whereu; and®; are thejth columns ofl and@;,,
respectively. Minimizing individually with respect & results in the L, =P}

ionl, T _ T whi . . -
nor.mal equatiofL,_; + F* MF) 8, = F* Muj, which leads to the —M - MF(Li_, + F'MF)"'F'M (16)
optimal©;. as

O, — (FIMF +15. )'F M. which is (10). B
O = + i) ©) We now combine the predictior, and L, with the observation

equation (3) to obtain an ML estimate. Again, a square Joof Ly,

i i i i i T i i - — — p—
The optimum is unique sinde; _, + F* MF is nonsingular. The pre such thal™ T’ = L, is a whitening operator for the prediction error

diction error information matrix then becomes

L, =L:(6}) I(xp 1 —Xe1) =6s (7)
_ ray sy s n
_Mi ?‘ T(L"_‘ + F_MF)QL’ whereé; has zero-mean and a covariancelofCombining with (3)
-6 F' M- MF6; results in
=M+ 6 F'M-6;'F'M - MF&; T T 5
=M - MF(L;_, + F'"MF)"'F'M (10) { ve } = {H} Xk + {vk} (18)

which turns (7) oL, = Ly + H”NH. We next show that these from which the ML estimate would yield the filtered gstimaite and

expressions for the information matrices are indeed consistent with e Noting thai,. andv are uncorrelated, the ML estimation formula

Kalman filter error covariances. would yield
The Kalman filter equations can be derived using the maximum like-

lihood principle [6]. Given a generic observatign= Hx + v where

v is a zero-mean random vector with covaria®e*, the maximum

likelihood (ML) estimate can be givena8"""” = PH” Ny, while the

associated estimation error covariadtend informationL. matrices

areP = L' andL. = HY NH, respectively [5]. These formulae are

used in the derivation below. . )
We first combine the dynamic equation (2) with the estinsate,  Which easily leads to (5).

andLi given from the previous time step to derive the expression

for the predictiorx; andLy. The square root of the information matrix lll. I NTERPRETATIONS

is a whitening operator for the corresponding estimation errdr. i

a square root such that’ I' = L,_1, then

L.=L.+H'NH (19)

which is the optimal version of (7), and

]Zkf{k = fkik + HTNYk (20)

The theorem specifies an optimal strategy to chdas@mong the
candidate matricek, (@) given by (6). To gain insights into these
) candidate matrices, 1€, = F(x,_1 — %Xx—1) be the forecast error

I(xp—1 — %Xp1) = ks (11) whose information matrix is denoted 5. = (FP,F’)~!. The
one-step ahead prediction er®f = x, — X, can then be written
whered, 1 is a zero-mean process with covariance matrix of identitysx), = £, + w. We now consider expanding the prediction error as
I. Combining this equation with (2) would yield %, = (I — &;)X), + &%), using a free matrix parametdy, . We then
assigré, = (I — &)%), andw,, = $,X,,, or equivalently

I'x;._ I' 0] [xk— br—
k—1 — k—1 + k—1 (12)
0 -F I Xk —Wg 0 I1-&.1_, —&,
= X + (21)
) i 0 @}‘» — Wi
whereé;_, andw;. are mutually uncorrelated. Applying the ML esti-

mation formula to (12) would result in from which the (posterior) information matrix &, can be obtained

(ML) - ) from the ML formula as
Xp—1 P Li 1%Xe (13)
X21\114) 0

Li(®) = (I— @) Le(I— &) + &L M, (22)

and

By re-parameterizatio#, = I — FO,,, the set of matrices defined as
(22) can be shown identical to the set of the candidate matrices of (6).

P Lo +F'MF -F'M1! _ P P (14)
- Po1 Poo Thus, the candidates for the prediction error information matrix can be

-MF M
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interpreted as the results of the expansion (21), which parti&isto V. EXAMPLES
compongpts_based/on the forecast er¢g) @nd d_ynam|cs errom). For comparison, the approximation methods are applied to a one-di-
The partitioning ofc;. allows access to the matrix structure (for SParsg ensional (1-D) version of the image sequence reconstruction problem
approximations) through its free parameters. It is reasonable fromiﬁrtl]

information theoretic perspective [5] that the optimal chdigehap-

pens to be the candidate with the least information (or maximum un-

certainty), measured by the trace (sum of eigenvalues). The trace of min /AT / wi Ox ’ + wy Ox ’ ds dt

the candidate matrices can thus serve as a measure of optimality in this z(s,t) | Jo D ot Os

sense. Note, however, that the trace is not an explicit indicator for other k

matrix properties, such as the distribution of eigenvalues and structures + Z lly: — w(siyiT)|)” (25)
of the eigenvectors, that may also affect filter performance viheis i=1

approximated.
where the unknown (s, ¢) is defined in part over a 1-D cyclic spatial
domainD and is observed ag. at a single randomly selected location
IV.' APPROXIMATIONS 51, attimet = k7 for a fixed intervalr. For formulation of a discrete
Given sparsely banded matricBsH, M, N (for all k) andLo, the Kalman filter, the first order differences are used for the derivatives, and

recursive equations (16) and (19) cannot maintain a sparse structurffysecond and third quadratic terms in (25) are lumped into a single,
L, andL;, because of the prediction step (16). In [1], the matrix inversgEctor equation (3) (see [1]). The parameters used here are 1,

in (16) is approximated by a series expansion based on the Jacobi itér-= 0_'001’ ar_de = 32. ) )
ation A unit-magnitude sine wave has been reconstructed from its noise-

less (but very sparse) observatignsusing the optimal and approxi-
mated Kalman filter algorithms. The information matrix was approxi-
(L 1 +FIMF) ' =4 —A'04! mated by constraining it to be cyclic tri-diagonal, and the approxima-
+AIAIOAT (23) tion was executed with each of the truncated series, direct, and diag-
onal methods. All three approximation methods have performed well
with respect to the optimal (nonapproximated) Kalman filter. The root
where4 is the diagonal matrix whose diagonal elements are identicaltmean square (rms) difference between the approximate and optimal
those of the matriL, ; + F"MF while2 =L, , + F'MF — A. estimates was 0.012 &t = 32 for each of the three approximation
The bandwidth of the approximated inverse increases as more termethods. For the direct and diagonal methods, the values of the trace
participate in the series. SpecificallyBfis diagonal for allk then the of L, (©;.) were both 0.8% higher than that of (the optinal), on the
first two terms in the right hand side of (23) can be used to contain theerage over 100 time steps. The small discrepancy in the trace values
matrix bandwidth in the information matrix in (16). F has nonzero (between the optimal and approximated) is consistent with the low-rms
off-diagonal elements, only the first term in the series can be usedewor in approximations. For the series truncation method, no negative
prevent spreads in matrix bandwidth in general. This approach to &igenvalue was observed during the first 100 time steps.
formation matrix approximation is hereafter referred to asshees Next, a translating version of the unit-magnitude sine wave is recon-
truncationmethod. A major drawback of this approximation methodtructed. This problem is motivated by the data assimilation applica-
is that negative eigenvalues can be introduced into the information nians [4] in which estimation of waves in motion from sparse measure-
trix. ments is often a key task. To incorporate a known translation speed
The alternative recursion (6)—(7) introduced in this note can maiwe replace the first integrand in (25) with
tain positive definitiveness in the information matrix. As a direct ap-
plication of the theorem presented earlier, we can impose an arbitrary
sparse structure on the information matrix by minimizing its trace while w
constraining the appropriate elementdaf ©;.) to equal to zero. Nu-

merl_cally this 'eaf_‘s toa mlnlmlzat_lon of a quadr_at!c CO_St W't_h MaNWhich is discretized to a cyclically tridiagonal state-transition matrix
nonlinear con.straln quathns, which can beloptlmlzed iteratively [7I]L (by a Lax-Wendroff scheme). In generd, here would have a
We refer tq this aPPfO_X'm_at"’_“ apprgach as direct method. __more complex structure than in the previous case without translation.
anstra_lned m|n|m|zat|qn in the dlre_ct method can be computgtlowith ¢ = 0.1 and keeping all other reconstruction parameter values
ally |ntenS|vg. An .economlcal alterngtlve Is to restéd} to be a di- identical to the previous case, the optimal and approximate filters have
agonal matrix. Tk_us, r_ejerred to as ttjtagonalnjethod_, tends to pre- been applied to the sparse observatigns The information matrix
serve the bandW|dth_ m"‘ To compute the optimal dla_lgonélk, WE  was approximated to be cyclic penta-diagonal. The rms differences
letd; = H,».,»u]» .and minimize (8) with respect to each diagonal eleme'?)tetween the approximate and optimal estimated at 32 were
8, resulting in 10.200, 0.030, and 0.049 for the series truncation, direct, and diagonal
methods, respectively. Along with the unacceptably high-rms value,
diag(6y) = diag (FTM)/diag (flk—l + FTMF). (24) negative eigenvalues _in the approximated information _matrix haye
been observed (especially in early time steps) for the series truncation
method, indicating that this approximation method is unsuitable for
The set of feasibl@;, in the diagonal method is a subset of the feasiblhe problem. For the direct and diagonal methods, the respective trace
set in the direct method. The tracelof (O, ) resulting from the diag- values ofL;(©:) were 11.1% and 30.4% higher than the trace of
onal method would then be larger than or equal to that resulting fraime optimalLL,. (averaged over 100 time steps). The relative increase
the direct method. In this context the direct method can yield the bésttrace is consistent with the relative rms accuracy for these two
parameters of the Markov random field (as which a sparse informatiapproximation methods.
matrix can be interpreted [1], [3]) approximating the estimation error Clearly, the alternative recursion presented in this note, with its
at each time step of Kalman filter. ability to impose positive definiteness in the approximated information

2
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matrix, improves consistency in filter performance dramatically. The [2] H. W. Sorenson, “Least-squares estimation: From Gauss to Kalman,”

best sparse approximation given a desired matrix structure can be
computed with the direct method, useful for predicting (through a
miniaturized test case like those considered in this section) the best
[4] M. Ghil and P. Malanotte-Rizzoli, “Data assimilation in meteorology

possible performance of an approximated Kalman filter.
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